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a alternative proof of the main results of Alikakos. Invariant
sets in one space are automatically invariant sets in many spaces
(which implies smoothness properties of invariant sets), point
dissipative and compact dissipative are equivalent in many spaces
and imply bounded dissipative in spaces of "smoother" functions,
the existence of a "very smooth" maximal compact invariant set
under a very weak dissipative assumption, along with its strong
stability and attractivity properties in several spaces, and
fixed point theorems under these weak dissipative hypotheses.-

The first section will show existence, uniqueness and the variatio
of constants formula, along with certain compactness properties of
the orbits for Equation (1). The second dection will discuss
boundedness of orbits. The third section will discuss invariant
sets. Finally, the fourth section will discuss the limiting behavior
under weak dissipative conditions.
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ASYMPTOTIC BEHAVIOR FOR A STRONGLY DAMPED

NONLINEAR WAVE EQUATION

Paul Massatt

In this paper, we consider the limiting behavior of equations of the form

utt - aAut - Au Y(t,x,u,Vu,ut,Vut) (1)

with ( > 0 and Y periodic in t. We also consider special cases where 9

may depend on fewer terms. We are interested in solutions of the form

u(t,x): R x A JR where A is a bounded domain in J n with smooth boundary,

u + -i- 0 for all x E A and some > > 0, and u(0,x) = *(x) and

u t(O,x) = *(x) for *(x),*(x) in some appropriate space of initial functions.

The case of Neumann boundary conditions could also be considered but is slightly

more complicated and so we have omitted this case from discussion in this paper.

(See [14]).

This paper is a specific application of my recent paper, "Limiting Behavior

for Strongly Damped Nonlinear Wave Equations" [14] where results of Webb [16]

and Fitzgibbon [4) were extended by applying results of a few recent papers of

mine ([11], [12), [13], [14]). I am deeply grateful to Professor Jack K. Hale

S'I for his help and supervision in the preparation of this paper.

Before describing the results, a few definitions will be needed. Let

. T: X -*- X be a continuous map on a Banach space X. A bounded set B c X

dissipates a set J if there is an integer no > 0 such that T (J) c B for all

n > no. T is point dissipative if there is a bounded set B which dissipates

* all points in X. T is compact dissipative if there is a bounded set B which41_ _ _ __ _ _ __ _ _ _ _
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dissipates all compact sets in X. T is local dissipative if there is a

bounded set B which dissipates a neighborhood of any point in X. T is

local compact dissipative if there is a bounded set B which dissipates a

neighborhood of any compact set in X. T is bounded dissipative, or ultimately

bounded if there is a bounded set B which dissipates all bounded sets in X.

Some of the main results of this paper are to show boundedness of orbits in

one space implies boundedness of orbits in other spaces (the technique here provides

an interesting alternative proof of the main results of Alikakos in [1], see

[14]), invariant sets in one space are automatically invariant sets in many spaces

(which implies smoothness properties of invariant sets), point dissipative and

compact dissipative are equivalent in many spaces and imply bounded dissipative in

spaces of "smoother" functions, the existence of a "very smooth" maximal compact

invariant set under a very weak dissipative assumption, along with its strong stability

and attractivity properties in several spaces, and fixed point theorems under

these weak dissipative hypotheses.

To understand these results we introduce some definitions. The map T may be

thought of as the period map. A fixed point, then, corresponds to a periodic solution.
+ +

The orbit of a set B under T, y (B), is defined by y (B) U Tn(B). The
1 " n=O

W-limit set of B, W(B), is defined by w(B) n cI{UTn(B)}. A set J is
m=O n=m

invariant under T if TJ J. Let Ba(x) be a ball of radius a centered at x.

A set J is stable if, for all C > 0, there is a 6 > 0 such that for all

[ ;'!n > 0, Tn(J+B (0)) c J + BC(O). J attracts B if every neighborhood of J

dissipates B. J is uniformly asymptotically stable if J is stable and attracts

a neighborhood of itself.

The first section of the paper will show existence, uniqueness, and the

variation of constants formula, along with certain compactness properties of the

orbits for Equation (1). The second section will discuss boundedness of orbits.

<L P:
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The third section will discuss invariant sets. Finally, the fourth section will

discuss the limiting behavior under weak dissipative conditions.

1. Existence, Uniqueness, and Compactness Results. Equation (1) may also be

considered as an ordinary differential equation on a Banach space. This is the

setting I prefer, as it usually seems much more convenient. If v =ut, then

(u) u + '

vW t [A vCA u (t 5x~u9Vu~vVv)(2

or ~

z t = -Bz + F(t,z) where B ], (= , ;' -

LA -(A

0 t /,.,\- .,. ...

F(t,z) :,and z 0 = . ,. ,F;(t,x,u,VuvVv) and. |

We may consider a variety of spaces, such as LP x gp  *l,px LP (where W'p

is the completion in Wm p of Cm functions with the appropriate boundary
,2, p' , n,P

; conditions). 2,p , or W x where 1 < p <a* and 1<n<m<2.

Following the style of D. Henry [9), we show that the solution map to
i'

zt = -Bz, (3)

sometimes denoted eBt, is an analytic semigroup. An analytic semigroup on a

. Banach space X is a family of continuous linear operators on X, (T(t)1t>0

' satisfying:

* .* ~ ------------ - 77 W

-Af.



4

i) T(O) I, T(t)T(s) T(t+s) for t, s > 0

(ii) T(t)x * x as t - 0 , for each x E X

(iii) t - T(t)x is real analytic on 0 < t < - for each x E X.

The infinitesimal generator L of this semigroup is defined by
1

Lx = lim I (T(t)x-x), its domain D(L) consisting of all x E X for which
Lt

this limit exists. We usually write T(t) = e

A linear operator A in a Banach space X is called a sectorial operator

if it is a closed, densely defined operator such that, for some c in (0,T/2)

and some M > 1 and real a, the sector S =f{j < larg(-a)l < R, X $ a}

is in the resolvent set of A and l(A-A) 111 < M/IA-al for all X E S

It is known that if A is sectorial, -A generates an analytic semigroup

e -At(see [9]), and conversely, if -A generates an analytic semigroup, then

A is sectorial. Furthermore, e-At = __f t 1

in P(-A) with arg A ±0 as I -I +- for some 0 E (l/2,iT). If

Re 0(A) > 6, then Ije-Atii < Ce- 6t  for all t > 0 and for some constant C.

We now apply these results to the operator B.. We know A is a sectorial

operator on LP, lP, and W2'p. The operator -A has simple eigenvalues

{A } with X > 0, (X } + , and corresponding eifenfunctions fP (x)}. ByIn n>0 n n n

usingthese eigenfunctions we can show B has eigenvalues {rn } U {q n where

4 n 1 22 I a2X-nx
r X -4X and qn 2 nn n n 2We ge

S I
D2

= 2 X

* lin {r } : and lim {qn }  +. Hence, we know {rn  U {U l U {U } is in the
n- n

2spectrum of B, with {r } U {qn
}  in the point spectrum and k}- in the

na

continuous spectrum.

4. We next show that this is the entire spectrum of B, and that B is

sectorial. To do this we formally calculate the resolvent of -B, (X+B)

'p
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We get

1 (X2 - aX~lA4

Since all the operators commute, it is easy to see that the inverse exists for all

L {r n} U {qn} U Furthermore, by using the bounds on the resolvent (X-A)

Csince we know & is sectorial) it is very easy to show B is also sectorial.
-Bt

Hence, e is an analytic semigroup. Since Re G(B) < 0 we have

Ie-BtIl < Ke-6  for some K, 6 > 0.

In the following we will use the fact that eBt (X+B)leXtdX where r

is a contour in P(-B), the resolvent of -B, with arg X -. ±0 for some

E E (7f/2,71). This tells us that eBt (v(x)), considered as an operator on

v(x) maps bounded sets in Lp to bounded sets in , 2

We now return to equation (2 ). If F(t,z) is Holder continuous in t and

F(t,.): X- Y is locally lipschitz with D(A) c-.Y (D(A) on the space X isx

continuously imbedded into Y) then, following D. Henry [9], we have existence,

uniqueness, and the variation of constants formula,

4 ~ ~~~-B(t-t0  ttsFs

z(t) = e B( F(s,z(s))ds. (4)
to0

' This formula will constantly be used as we discuss further results.

!! For compactness properties, it is useful to use the notion of the
} '1

Kuratowski measure of noncompactness, or a-measure. The a-measure is a map

xq -o [O,w] where Y is the collection of bounded sets in X with the

property a(B) = inf{r/B can be covered by a finite collection of sets of

~diameter less than r}. The 01-measure of noncompactness has the following

properties:

V-A
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) ~a(B) 0 if and only if Cl B is compact,

(ii) a(BUC) = max[a(B),a(C)],

(iii) a(A+B) < a(A) + a(B), and

(iv) a(Cl co A) = aA).

T is called an a-constraction if there exists a k E [0,1) such that

for all B E . *we have a(TB) < ka(B). Often in dynamical systems, we need to

consider a more general class of operators, the weak a-contraction. T is a

conditional a-contraction if there exists a k E 10,1) such that for all B

with TB E M we have U(TB) < ka(B). Similarly, T is conditionally completely

cortinuous if for all B E M with TB E _ we have TB is precompact. In

all the spaces we have considered, and with _ satisfying the conditions to be

mentioned below, the operator U(t,t0 ) defined by U(t,t 0)z0 = It e-B(t-s)F(s,z(s))ds

where z(s) is the solution with initial condition z(t 0 z0, is conditionally

completely continuous. This will follow from the fact that either F(t,.) is

completely continuous, or that e v( 0) maps bounded sets in Lp  into
v( x)

*2,p .eBt 0 )11*2,p x *2,p < 6t
bounded sets in W x W and satisfies lie v(x) W W 2, x142,x<1Cep

for some C, 6 > 0. Also, since for each space there is a C, 6 > 0 such that
e-Bt 6 -Bt

Ile I Ce-6t for any t > 0 there is an equivalent norm where e is a

j icontraction. Using this and property (iii) of the a-measure it is easy to see

that for all t >t0  there is an equivalent norm where X(t,t0 ), the solution

d map of (2), is a conditional a-contraction.

Some of the relevance of this is found in the following theorem.

+
Theorem i: If T is a conditional a-contraction and y (B) is bounded, then

Y(B) is nonempty, compact, and attracts B. Furthermore, if B is precompact,

then Y (B) is precompact.
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In order to synthesize the results, we will call S& the class of admissible

spaces. Three special classes of admissible spaces will be defined. The class

may be enlarged if greater smoothness assumptions on 5 are assumed (see [14]).

Case (i): F(t,z(t)) = (Y;(t,x,u,Vu,V,Vv)), Yis Holder continuous in t,
locally lipschitz and there exists a continuous function K(): + such

that lY(t,x,u,Vu,v,Vv)l < K(t)(l+uj + IVul + lvj + Vvl). Then the following

spaces are in class .s1: Wl,p x Wlp 2,p x l,p 2,p x 2, for all 1 < p < 0,

1,1 lU 'V *2 x*l.V *2 X*2
CxC, for 0 <V< P < 1, C C for 0 < V < 1, and C C

Case (ii): F(t,z(t)) = (Y(t,x,u,Vu, v), Yis Holder continuous in t, locally

lipschitz and there exists a continuous function K(.):IR - JR such that

I-5T(t,x,u,Vu,v) I < K(t)(l1+1u I + I Vu( + 1v I). Then the class ..e consists of

all the spaces mentioned in Ci) and the following additional spaces:

l'p X LP *2jp m*2 x 1 CV
Lp , C xC for 0 < P < 1, and xC for 0 < P, V < 1.

Case (iii): F(t,z(t)) = (.5(t,x,u,V)), - is Holder continuous in t, locally
+ +

lipschitz and there exists a continuous function K(.):]R -+R such that

!9(t,x,u,V)I < K(t)(l+lul+Ivl).

Then the class _CV consists of all the spaces in (i) and (ii) and the following

spaces: Lp x Lp  for 1 < p < - and CP XC for 0 < V < .< .

2. Boundedness of Orbits. It is often of great interest to know whether

boundedness of orbits in one space implies boundedness of orbits in other spaces.

This question was discussed for a predator-prey problem of great generality by

Alikakos []. The methods discussed here are different, and I believe of a simpler

il



nature than those found in Alikakos. The arguments use the fact that the dynamical

system is defined on a variety of spaces, the structure of the variation of constants

formula, and the repeated application of the Sobolev Imbedding Theorem.

Theorem 2: For Equation (2), if Y +(z 0) is a bounded orbit in some admissible

space X E J, then Y (z 0) is a bounded orbit in all admissible spaces Y for

that equation provided z0 E Y.

The proof may be found in [14]. We give an indication of the proof for an

example. Let z0 E Lq x Lq and z(t) bounded in Lp x Lp with p < q < 0.
_B(t-t0)

Let z(t) be bounded in Lp x Lp . z(t) = e z0 + U(t,t 0 )z0, with
U(t,t 0)z0 bounded in W2,p '2,p. The Sobolev Imbedding Theorem implies for

0p

some p, with p < p < q we have W c L1 . Hence U(t,t0)z0  is bounded in

L x L, and thus, z(t) is bounded in L x L . Proceeding by induction we

can show z(t) is bounded in Lq x L q .

3. Invariant Sets. Here we show an invariant set in one space is a compact

invariant set in all the admissible spaces.

Theorem 3: If J is an invariant set in an admissible space X for the period map T,

then J is a precompact invariant set in all the admissible spaces for the period

map T.

The proof may be found in [14]. Although the proof is similar to the proof of

Theorem 2.1, the following lemma is needed to resolve a problem.

Lemma 4. Let X c-4Y. Let J c X be precompact in X. Then Cl x(J) Cl Y(J)

where Cl X is the closure in the Banach space X.

t
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Now we consider case (iii) of (2). Let J be an invariant set in gp x Lp .
-BnW

Define C(n) = e and U(n) = U(t0+nw,to). Then Tn = C(n) + U(n). Since T

is a conditional a-contraction, J is precompact in LP x Lp . U U(n)J remains
"' 2,p = r  Lr

bounded in 2'p x W so for some p > p, U(n)J is precompact in L x L
n=O

for p < r < pl. But J = C(n)J + U(n)J and C(n)J - 0 as n - . Thus,

J c C1 X( U u(n)J). Hence, J c Lr x Lr by Lemma 4. Proceeding by induction we
n0=

get J in a precompact invariant set in Lq x Lq  for all 1 < q < -. Since

U U(n)J is precompact in l'p X Wl'p also, we can get the same result for
n=O
l,q x l,q for all 1 < q < -. Using this we may extend to W2, n x W2,q for

all 1 < q < 0, and even to C2 x C2 .

4. Limiting Behavior. We will once again follow the format of previous sections.

We will state a general theorem, indicate the methods used to prove the result,

state several corollaries, and then apply the result to an example.

Theorem 5: Let X and Y be admissible spaces (X,Y E-() and Y C-4X. Suppose

a bounded set in X dissipates points in Y under the period map T of (2).

Then T is compact dissipative in Y. Furthermore, if Y c-.c-X (compactly

imbedded), then T is bounded dissipative in Y.

The proof uses the Sobolev imbedding theorem and the following results from

[ll, [13J.

Theorem 6: Let i: X C-#X 2 be a compact imbedding where X. are Banach spaces

topologies denoted fi" Let T,C, and U be continuous operators mapping X.

- into itself, i = 1,2. Let T = C + U with C a contraction in both spaces

and U satisfying the following property: if B and U(B) are bounded subsets
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of (Xl, $ 2) then U(B) is bounded in (XI, _5'). Let C(O) 0. Then point

dissipative and compact dissipative in X2 are equivalent. Also, the following

three statements are equivalent: Ui) There is a bounded set in X which

dissipates points in XI, (ii) T is point dissipative in X , nd (iii) T is bounded

dissipative in XI.

The following well-known theorem indicates the significance of these results.

Theorem 7: If T is a conditional a-contraction and compact dissipative in X

then there is a maximal compact invariant set in X which is uniformly asymptotically

stable, attracts neighborhoods of compact sets, and has a fixed point (corresponding

to a periodic orbit of the equation). If, in addition, T is bounded dissipative,

the maximal compact invariant set attracts bounded sets.

We now apply all these results to case (iii) of (2). Let T be point

dissipative in Lp x Lp  (or a weaker condition is to let a bounded set in

Lr x Lr  dissipate points in Lp x Lp  for 1 < Y < p) with p < 1. Then T is

compact dissipative in the following class of spaces, which we will call

_ ]p l: L q  x C C X Lq , p x L ,  2 , L ,  and 2 ,

for p < q < and 0 < P < i. Also, T is bounded dissipative in class _WII

which consists of the following spaces: l l  w x w w x W CY x

SC1 x C , CI,a X C , 2 X C , 1 x C 1, l C 2 1 Ia V CI 2 x C1  and

~2 X 2 ~ 2 ~ 1 1,nC C , where q > p, 0 < , a < 1, and 0 < V < p <1. In addition, there is a

set K which is the maximal compact invariant set for each admissible space, and

in classes ...(I and _1II it is uniformly asymptotically stable and attracts

neighborhoods of compact sets in class _QII and bounded sets in -WII. Furthermore,

T has a fixed point (corresponding to a periodic orbit).

The proofs follow from the fact that an invariant set in one of the spaces must

' i
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be a precompact invariant set in all the spaces. Hence a maximal compact invariant

set in one space becomes a maximal compact invariant space in all of the spaces.

The attractivity properties follow from Theorem 7, and the original dissipative

results follow from Theorem 6, the same inductive process, and repeated application

of the Sobolev Imbedding Theorem.

In applications, it is often possible to prove boundedness or dissipative

properties in some special space; for example, Lyapunov functions are often

employed. But the same techniques cannot be applied to obtain boundedness or

dissipative in any other spaces. The above results allow one to extend the boundedness

and dissipative properties to many other spaces, along with the existence, very strong

stability and attractivity properties of the maximal compact invariant set.
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